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1. INTRODUCTION

The van der Pol oscillator(8) is a prototypical nonlinear oscillator and is
widely utilized as a model of various physical, biological, and engineering
systems. The oscillator presents a so-called relaxation oscillation(5) in the
limit of high nonlinearity. A relaxation oscillator has two different time
scales: slow and fast dynamics. Dynamics with multiple time scales are
typical in biological systems, especially in neuronal systems.(4,6)

The study of the effect of an external (deterministic) forcing on the
oscillator is important since a physical oscillator does not usually stand
alone and is connected to the environment and/or other oscillators.

Noise effects on the phase lockings and bifurcations in the sinusoidally forced
van der Pol relaxation oscillator are investigated. Deterministic (noise-free) one-
dimensional Poincare mapping is extended to the iteration of the operator
defined by a stochastic kernel function. Stochastic phase lockings and bifurca-
tions are analyzed in terms of the density evolution by the operator. In par-
ticular, a new method which uses spectra (eigenvalues and eigenfunctions) of the
operator to analyze stochastic bifurcations intensively is proposed.
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Oscillators also suffer noise, which may represent environmental noise or
uncertainty due to the limitation of our knowledge about real systems.
Thus we study the (piecewise-linearized) van der Pol relaxation oscillator
in the presence of both an external periodic signal and noise. Recently, such
a periodically forced system with noise has attracted much attention in the
context of stochastic resonance,(16) while research on the effects of noise on
general systems has a long history, and noisy or stochastic dynamical
systems have been investigated in a wide context.(12)

Grasman and Roerdink(7) studied the van der Pol relaxation oscillator
in the presence of noise and reduced the problem of examining the period
of the oscillator to the analysis of the time necessary for a one-dimensional
stochastic process to reach a boundary for the first time. Tateno et al.(14)

extended this first-passage-time approach to the case of a periodic forcing.
In the present paper, we develop this work(14) to study intensively the effect
of noise on the phase lockings and bifurcations in the forced relaxation
oscillator.

Section 2 presents the sinusoidally forced (piecewise-linearized) van der
Pol oscillator with noise. The periodically forced relaxation oscillator with-
out noise displays various phase-locking patterns and bifurcations if some
control parameters such as the amplitude and/or period of the periodic
forcing are changed. This system is usually analyzed in terms of the iterations
of a one-dimensional return map or a Poincare map of a "phase" variable.
Section 3 defines a (stochastic) kernel function as a stochastic extension of
the return map. Then the system of iterations of the deterministic return
map is extended to the system of iterations of an operator defined by the
kernel function. Examples of stochastic phase lockings are presented in the
framework of the evolution of a probability density function (pdf) of the
phase variable by the operator. Section 4 studies briefly the noise effects on
bifurcation phenomena using the stationary or asymptotic pdf's generated
by the operator. Section 5 proposes a new method which uses spectra
(eigenvalues and eigenfunctions) of the operator to analyze the stochastic
bifurcations in detail.

Stochastic dynamical systems are usually analyzed from the viewpoint
of stationary or asymptotic probability distributions of some state
variables, e.g., the stationary solution of the Fokker-Planck equation in a
continuous-time system and the invariant density of the Frobenius-Perron
operator in a discrete-time system. Recently, the more dynamic viewpoint
rather than the static one has been emphasized.(11,13) Classically, the defini-
tion of a stochastic bifurcation is based on the change of the topological
shape of the stationary probability distribution and ignores the dynamic
viewpoint; the definition utilizes only static information.(9) Recent develop-
ment of a stochastic bifurcation theory overcomes this drawback and takes
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the dynamic information of a stochastic system into account.(1,2,17) The
system studied in the present paper, however, seems to show no stochastic
bifurcation even in this sense of the new theory. Our approach of using
spectra of the operator is a simple alternative to analyze a stochastic bifur-
cation from a dynamic point of view.

2. VAN DER POL RELAXATION OSCILLATOR

We consider a sinusoidally forced (and piecewise-linearized) van der
Pol relaxation oscillator in the presence of additive noise:

where A, T, and 00 are the amplitude, the period, and the initial phase of
the sinusoidal input, respectively. W(t) is the standard Wiener process and
a dW(t) /dt denotes a Gaussian white noise with a noise intensity a. Note
that the cubic polynomial of the original van der Pol equation is piecewise
linearized for computational purposes.(14) Throughout, we consider the so-
called singular limit of s = 0. In this case, the van der Pol oscillator shows
a relaxation oscillation.

Fig. 1. The x-y phase plane of (1) in the limit of e = 0 and the N-shaped x-nullcline (x = 0).
The y-nullcline (y = 0) coincides with the y axis. The closed orbit ABCD is a limit cycle. See
text for details.



We extend the deterministic map to the case with noise in the following
way. In the noisy case, both variables 00 and 01 fluctuate owing to noise
and thus are random variables 00 and 0l, respectively. Define a kernel
function g(00, O1) using a conditional probability density function:

The sequence {0n} generated by this one-dimensional discrete-time
dynamical system will be referred to as the orbit of (2) in the same way as
the orbit of (1) unless any confusions might occur. Generally, in the case
of m:n locking, the orbit or sequence {0n} asymptotically approaches to an
n-periodic orbit (sequence):

Phase lockings of the noise-free case are usually analyzed by this return
map p(0) and by the one-dimensional mapping:

Figure 1 shows the x-y phase plane of (1). In the limit of £ = 0, the
orbit with an initial value which is not on the N-shaped x-nullcline (x = 0)
instantaneously jumps to the x-nullcline in the horizontal direction since
the horizontal velocity x=f(x, y)/e becomes infinite unless f(x, y) =0.
Thus, all orbits are considered to move on the x-nullcline and both the
sinusoidal and noise terms of (1b) modulate the velocity of the orbit along
the x-nullcline. On the right (left) branch of the N-shaped x-nullcline, an
orbit moves toward the point B (D, resp.). At the point B (D), the orbit
instantaneously jumps to the point C (A, resp.), since we consider the limit
of e = 0. This limit is called singular, since orbits are not differentiable at
such jump points. The parallelogram ABCD is a limit cycle to which every
orbit of (1) approaches asymptotically.

3. STOCHASTIC KERNEL AND MARKOV OPERATOR

Consider the noise-free (r = 0) case and a Poincare or return map as
follows. Suppose that an orbit starts at the point A of the x-y phase plane
with an initial "phase" 00 of the sinusoidal input and that the point returns
to the point A again after a time t. Then the phase of the sinusoidal input
is changed from o0 to 01:
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The function g ( t 0 , t 1 ) can be calculated numerically without simulations of
the stochastic differential equations (1). ( 1 4 )

Figure 2a shows an example of the return map p(9) and its orbit {tn}.
The graph of p ( t ) intersects a diagonal line at two points (indistinguishable
in this figure) and the lower intersection point 9* is a stable fixed point of
(2). Thus an orbit t0, t1,... with any initial phase t0 asymptotically con-
verges to this fixed point t*, which shows that a 1:1 phase locking occurs.
Figure 2b shows the kernel function g which corresponds to the deter-
ministic map of Fig. 2a. The function g takes relatively high values along
the graph of the map p. Thus g can be considered as the stochastic exten-
sion of the return map. The heights and widths of the peaks of g depend
on the values of ( t 0 , t1) and thus we can see that the effects of blurring of
the deterministic map by noise are not uniform.

Using the kernel function g, we extend the system (2) to the noisy
case. Let S denote a unit interval [0, 1] and D the set of absolutely
integrable nonnegative functions with a unit L1 norm on S. A function
which belongs to 2 is called a probability density function (pdf) or simply
a density function. A (Markov(11)) operator ^ on 2 is defined by

Fig. 2. (a) Poincare or return map p ( t ) (thick curve) and its orbit {tn} (thin lines). A =0.3,
T= 1.5. The orbit t0, t1,... asymptotically converges to a fixed point 0* which corresponds to
a 1:1 phase locking, (b) Stochastic kernel function g(00, 01) which corresponds to the deter-
ministic map of part (a). a = 0.03.

Sinusoidally Forced van der Pol Oscillator 1111

Let h 0 ( t ) e D denote the probability density function of the initial phase
t0 when an orbit starts at the point A of the x-y phase plane. Then the



is assumed to hold.(14) The operator with this property is known to have
a unique asymptotically stable invariant density (see Corollary 5.7.1 of
ref. 11). Thus the sequence { h n ( t ) } produced by the operator P always
approaches a unique invariant density asymptotically as n -> i.

Figure 3 shows examples of the evolution (or sequence) of h n ( t ) .
Figure 3a corresponds to the deterministic 1:1 phase locking (Fig. 2). The
uniform initial density function h 0 ( t ) changes its shape and approaches an
invariant density function h* (~h30) with one sharp peak, which shows
that a 1:1 phase locking does occur in a stochastic sense. The peak of the
density functions { h n ( 0 ) } is highest near n = 7 and is relatively lower in the
invariant density h*, which means that a large initial phase fluctuation
becomes small quickly after several cycles of the oscillator and finally
becomes a moderate fluctuation. This phenomenon is due to the fact that
the peaks of the kernel function g ( t 0 , t1} near t0 = t1 = t* are lower than
other peaks (cf. Fig. 2).

Figure 3b corresponds to the coexistence of two 2:1 lockings in which
the deterministic map p ( t ) has two stable fixed points (attractors) and
the forced van der Pol oscillator shows two different modes of 2:1 phase

and is called a stochastic kernel. The inequality

As is easily seen from its definition, the function g has the property

Note that we investigate the asymptotic behavior of the sequence {hn(0)}
of probability density functions rather than the sequence { t n } .

Let us list several preliminary definitions.(11) A function h*(0) is called
the invariant density function of an operator P if the relation Ph* = h*
holds. The invariant density is asymptotically stable if for any initial density
function h0eD

density function of ©1 when the orbit returns to the point A again is obtained
by h l ( t ) = Ph 0 (0) . Thus, the deterministic mapping (2) is extended to the
system
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Fig. 3. Examples of density evolution (sequence) ( h n ( t ) } . (a) 1:1 phase locking. ,4 = 0.3,
T= 1.5, T = 0.03. A uniform initial density function evolves to an invariant density function
h*=h 3 0 . (b) Coexistence of two 2:1 lockings. A = 1.5, T=0.85, (7 = 0.02. (c) Density evolu-
tion {hn(t)} and (d) its invariant density h*=h2 0 0 of a stochastic 5:3 phase locking. A = 2.0,
T= 0.85, (7 = 0.02.

lockings, depending on its initial values (see Fig. 4). The initial density with
a sharp peak near one of the fixed points does not change its shape much
by the operator and evolves slowly to an invariant density with two peaks.
This slow change corresponds to the slow transition between the two
attractors caused by noise.

Figure 3c is also an example of the density sequence in the case of
stochastic 5:3 phase locking. In the corresponding deterministic case, the
map p(0) has a stable 3-periodic orbit with different three phases. The
initial density function h 0 ( t ) has a high mode near 0 = 0.42, which is one
of the three phases to which the oscillator is locked in the noise-free case.
The functions h1 and h2 have a high mode near the other two of the three
phases. This sequence seems to vary initially with period 3, but finally



converges to an invariant density function (Fig. 3d) with three sharp peaks,
which shows that a 5:3 locking occurs in a stochastic sense.

Note that there is a big difference between the convergence speed to an
invariant density in Fig. 3b and Figs. 3c, d, although noise intensity is same
in both cases.

4. DETERMINISTIC AND STOCHASTIC BIFURCATION
DIAGRAMS

Patterns of deterministic phase lockings depend on both the amplitude
and the period of the sinusoidal input. One phase-locking pattern is con-
sidered to bifurcate from the other phase-locking pattern as a (bifurcation)
parameter is changed. Figure 4 shows a deterministic bifurcation diagram
of the return map p for the noise-free (c = 0) case with a bifurcation
parameter A and shows how the asymptotic value(s) of the sequence { t n }
change depending on the input amplitude A.

The period of the sinusoidal input is fixed as T=0.85 and is about half
of the intrinsic period of the van der Pol oscillator [ln(7/3)2= 1.69]. So,
for a wide range of the amplitude (0.3 <A < 1.8), 2:1 phase lockings occur
(two cycles of the input synchronize with one cycle of the oscillator). In
this range of A, two points are plotted and each of two points corresponds

Fig. 4. Deterministic bifurcation diagram of the return map p ( t ) . The bifurcation parameter
is the amplitude A rather than the period T, which is fixed to T = 0.85. Asymptotic sequences
{tn}, n= 101,..., 600, produced by (2) were plotted for each of 600 equally spaced A values
on the interval [0,2.5],
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Fig. 5. Stochastic (invariant density) bifurcation diagrams. T= 0.85. Invariant densities
h * ( t ) were plotted for each of 50 equally spaced A values on the interval [0, 2.5] for two
different noise intensities: (a) c = 0.05 (b) a = 0.2.

to the stable fixed point (1-periodic orbit) of the mapping (2). Namely, two
different patterns of 2:1 phase lockings coexist; the pattern depends on
both the initial phase of the input and the initial state of the oscillator. If
the value of A is changed, then various phase-locking patterns bifurcate.
For example, three points are plotted when A = 2.0. These points constitute
the 3-periodic orbit of the one-dimensional mapping (2). If A is large
enough (A > 2.4), one cycle of the input can synchronize with the one cycle
of the oscillator although the intrinsic periods differ by a factor of two.

Figure 5 is a stochastic or density bifurcation diagram which corre-
sponds to the deterministic one (Fig. 4). Invariant density functions are
plotted with various values of A for two different noise intensities
(a) a = 0.05 and (b) r = 0.2. In Fig. 5a, corresponding to the deterministic
bifurcation diagram, the peaks and the shape of the invariant density
change as the bifurcation parameter A varies. In particular, in the range of
1.8 < A < 2.4, the invariant densities have several peaks and complicated
shapes.

In the case of large noise (Fig. 5b), the stochastic bifurcation diagram
is very simple; the invariant densities have at most two peaks. The shapes
of the invariant densities do not depend on the amplitude A; only the
heights of the two peaks depend on A. Thus, as expected, noise washes out
the dependence of the density shapes (the number of peaks) on the
amplitude of the input.

In deterministic dynamical systems, the word "bifurcation" means
qualitative change (number, stability) of the solutions of a system. As
stated above, the equation



which the invariant density satisfies always has a "unique" asymptotically
"stable" solution and thus no bifurcation of this equation occurs in such a
sense. So what is a stochastic bifurcation? One (classical) definition of
stochastic bifurcation is based on the "qualitative" change of the shape of
the invariant density.(1,9) For example, the invariant densities change their
shape in the range 1.9 < A < 2.4 of Fig. 5a and thus stochastic bifurcations
do occur in this sense. In the vicinity of the value A = 0.29 of Fig. 4, two
1-periodic orbits (2:1 phase lockings) of the mapping (2) bifurcate from a
quasiperiodic orbit. In the presence of noise, however, the density functions
always have two peaks around A =0.29 (cf. Fig. 5a); the densities do not
change their shape. So, in the presence of noise, we cannot see any
stochastic bifurcations of a 2:1 phase locking.

Note that the recent mathematical theory(1,2) defines the stochastic
bifurcations based on the existence of multiple invariant measures rather
than the qualitative change of the shape of the invariant density. As stated
above, we can see no bifurcations of the present system also in the sense
of this new definition. Thus we will give an alternative approach which
analyzes the stochastic bifurcations of the noisy van der Pol oscillator [ or
the system (5)] in the next section.

5. SPECTRAL ANALYSIS OF STOCHASTIC BIFURCATIONS

5.1. Eigenvalues and Eigenfunctions of the Operator P

The linear operator P has all the information about the dynamics of
the forced van der Pol oscillator (1) in the limit case of s = 0. Numerically,
this operator P (kernel g) is discretized and is expressed by a matrix (the
density functions { h n ( t ) } are vectors then). This section analyzes the spec-
tral properties (eigenvalues and eigenfunctions) of the matrix numerically.
Note that we have done several numerical computations with different dis-
cretization sizes of the operator and confirmed that the following numerical
results do not depend on the discretization size.

The operator P is positive (all elements) and is a stochastic matrix
(the sum of every column is unity). Many spectral properties are known
about such a positive (or nonnegative) matrix (theorem of Perron-
Frobenius) and are summarized as follows(3):

(i-a) An irreducible nonnegative (stochastic) nxn matrix A has a
real eigenvalue 1 which is a simple root of the characteristic equation, and
the moduli of other eigenvalues do not exceed 1.

(i-b) The "maximal" eigenvalue 1 has a positive eigenvector and
there are no other (linearly independent) nonnegative eigenvectors.

1116 Doi et al.



(i-c) If A has k eigenvalues y1 = 1, y2,..., Ak of modulus unity, these
numbers are all distinct roots of Ak — 1 = 0 and the whole spectrum A1 = 1,
A2,..., An of A is invariant under a rotation by the angle 2n/k of the complex plane.

( i i ) Moreover, if all elements of A are positive, the maximal eigen-
value 1 exceeds the moduli of all other eigenvalues.

The operator P with small noise is practically considered to be a non-
negative matrix (some elements might be zero practically), although
theoretically it should be positive. So it is useful to keep properties of both
nonnegative matrices (i) and positive matrices ( i i ) in mind.

First we note that the eigenfunction (eigenvector) which belongs to the
maximal eigenvalue 1 is the invariant density function h* of the operator
P and that the eigenvalue with largest modulus other than 1 governs the
convergence speed of the sequence { h n } to this invariant density.

Figure 6 shows examples of the whole spectra (eigenvalues) of
operators P with different values of A. In all figures, we can see that the
operator has a unique maximum eigenvalue 1. Figure 6a corresponds to
the deterministic (noise-free) quasiperiodic case (cf. Fig. 4). We can see
many complex eigenvalues between zero and unity eigenvalues. Figures 6b
and 6c correspond to the deterministic 2:1 phase locking. Comparing
Figs. 6a-6c, we can see that eigenvalues change their values from complex
to real in order of the modulus as the value of A increases, which may
represent a bifurcation from quasiperiodic to 2:1 phase locking in a
stochastic sense. Note that Fig. 6c corresponds to the density evolution of
Fig. 3b and the second largest eigenvalue of this case is very close to 1,
although we cannot distinguish this in this figure. Thus in Fig. 3b the con-
vergence to the invariant density is very slow. Figure 6d corresponds to the
deterministic 5:3 phase locking [3-periodic orbit of (2)]. We can see that
the whole spectrum is roughly invariant under an angle 2rc/3 rotation of the
complex plane, which is a sign of a stochastic 5:3 phase locking.

In the following, Ai denotes the ith eigenvalue in the order of the
modulus and e i ( 0 ) the corresponding eigenfunction; A1 = l, and e1 is an
invariant density h*. Note that Ai, i>2, may be complex and any eigen-
functions et, i>2 (real part Rei and imaginary part 3e, if Ai is complex)
other than e, cannot be nonnegative;(3) the functions take both positive
and negative values. If we denote the eigenvalues as Ai, = ri exp(27njwi) with
imaginary unity, we have
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Fig. 6. Examples of spectra (eigenvalues) of the operator Sf. r = 0.85, a = 0.02. (a) A = 0.28,
quasiperiodic case, (b) A =0.6, 2:1 locking case, (c) A = 1.0, 2:1 locking case, (d) 4 = 2.0, 5:3
locking case. The abscissa and the ordinate are the real and imaginary parts of the eigen-
values, respectively.

Thus we have

If kco, is integer, both real and imaginary parts are invariant under Pk with
an amplitude decay rk

t.
Figures 7a and 7b show e1 and e2 (resp.), which correspond to Fig. 6c

(2:1 locking). In this case, the corresponding deterministic map p ( t ) has
two coexisting stable fixed points (attractors) denoted by t* and t**. The
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Fig. 7. Eigenfunctions of the operator P: 2:1 phase locking. A = 1.0, T=0.85, r = 0.02.
(a) The first eigenfunction (invariant density) e 1 ( t ) . (b) The second eigenfunction e2(0).
(c) The linear combination e = e1 + ue2.

first eigenfunction (invariant density) e1 of Fig. 7a has two sharp peaks
around the two fixed points. The second eigenfunction e2 of Fig. 7b has
positive and negative peaks around the two fixed points. Comparing
Fig. 7a with Fig. 7b, we can choose a real number n so that the linear com-
bination e = e1 +ue2 could become a probability density function with one
sharp peak around the fixed point 0* (see Fig. 7c). Then e = e1 — u e 2 has
one sharp peak around the other fixed point t**. As stated above, since
A 2 = 1 , the density function e (and e) is roughly invariant under the
application of the operator P:

which corresponds to the fact that the fixed point 9* is stable, although the
density e converges to the invariant density after many iterations of the
operator:

We can choose real numbers u, and u2 so that a function e = e1 +u1 Re2 +
u23e3 could be a density function with one sharp peak around 0 (0). If we
define

Figures 8a-8c show the eigenfunctions e1, Re2, and 3e2 (resp.) of the
5:3 locking (cf. Fig. 6d). In the corresponding deterministic case, the map
p(8) has a stable 3-periodic orbit t(0), t ( 1 ) , t(2) such that
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Fig. 8. Eigenfunctions of the operator P: 5:3 phase locking. A = 2.03, T = 0.85, a = 0.02.
(a) The first eigenfunction (invariant density) e 1 ( t ) . (b) Real part of the second eigenfunction
e 2 ( t ) . (c) Imaginary part of e 2 ( t ) .

then the (density) functions e and e have one sharp peak around 0(1) and
0 (2), respectively (strictly speaking, the functions have one sharp peak and
two small peaks). The second eigenvalue A2 = r2e2nJw2 of this case is
0.95e0.33x2nJ, roughly approximated by e2nj/3. Thus, using Eq. (7), we have

which corresponds to the relation for the deterministic case:

Thus, as is seen in Fig. 3c, the density evolves initially with a period three
and finally to an invariant density. The difference of |A2| from unity
corresponds to the noise-induced "phase drift" from one phase to the other
two of the three phases.

As demonstrated briefly in this subsection, the eigenvalues A, and
eigenfunctions et with i>2 possess the "dynamic" information of the
operator P, while the invariant density (first eigenfunction) e1 possesses
only "static" information. Thus the analysis of such spectra seems to be
useful to study the stochastic bifurcation of the operator P or of the system
(5), as discussed further in the following.

5.2. Spectral Bifurcation Diagram

In Fig. 9, the modulus and argument of the second, fourth, and sixth
eigenvalues of the operator P are plotted for various A values. Note that



Fig. 9. Spectral bifurcation diagram (2:1 locking), (a, c, e) Moduli and (b, d, f) arguments of
the second, fourth, and sixth eigenvalues are plotted, respectively, with various values of the
bifurcation parameter A. Note that the range of A of (a) is different from those of (b) and (c).
T=0.85, ,7 = 0.02. Invariant densities are also plotted: (g) A =0.28, (h) A =0.349, (i) A = 0.4.
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a bifurcation from a quasiperiodic orbit to a 2:1 phase locking occurs in
the corresponding deterministic case (cf. Fig. 4 ). Near A = 0.35, the second
eigenvalue abruptly changes its value from complex to real and the
modulus also abruptly changes from decreasing to increasing (see Figs. 9a
and 9b). As discussed above, the real and imaginary parts of the eigenfunc-
tion of an eigenvalue Ai = re2njw "rotate" by 2na> under the application of
the operator P. If co is rational rather than irrational, then the eigenfunc-
tion is considered to be "locked" under some iterations of the operator P.
Thus, a locking in the sense of the second eigenvalue is considered to occur
at A = 0.35.

The fourth eigenvalue also changes its value from complex to real at
a different value of A (=0 .7) (see Figs. 9c and 9d). So, this point is also
considered to be another stochastic 2:1 bifurcation point with respect to
the fourth eigenvalue. Stochastic systems, in contrast to deterministic ones,
may show several modes of bifurcation of one phase-locking pattern corre-
sponding to each eigenvalue. The modulus of the fourth eigenvalue, how-
ever, decreases monotonically, in contrast with that of the second eigen-
value. The eigenvalue with a larger modulus has a more important role in
the dynamics or evolution of the densities. Thus we can say that the point
of the second eigenvalue change is a major bifurcation point of a 2:1 phase
locking in the stochastic sense. Note that all invariant density functions
have the same topological shape (two peaks) in this parameter range
(Figs. 9g-9i). So, we can observe no stochastic bifurcation in the classical
sense.(1,9)

The stochastic bifurcation of 2:1 locking is demonstrated more clearly
if we plot both the second and the third eigenvalues. Figure 10a shows the
moduli of both the second and third eigenvalues, which corresponds to
Fig. 9. Below the stochastic bifurcation point (A < 0.35), both the second
and third eigenvalues are complex with the same modulus and they are real
above the bifurcation point (A >0.35). The modulus of the second eigen-
value increases after the bifurcation, while that of the third eigenvalue
decreases monotonically. Note that the graph of the arguments of both the
second and third eigenvalues is just a symmetrical duplication of Fig. 9b
with respect to the horizontal (A) axis. Figure 10b is the same graph as
Fig. 10a for a different range 1.67 <A < 1.82 and corresponds to the right
endpoint of the A interval of 2:1 phase locking (cf. Fig.4). The third
eigenvalue decreases leftward of the bifurcation point. The decrease in
magnitude of the third eigenvalue of Fig. 10b is much bigger than that of
Fig. 10a.

Both the moduli and arguments of the second, fourth, and sixth eigen-
values over a different range of the bifurcation parameter A are plotted in
Fig. 11. In the range of 1.98 < A < 2.04, the sixth eigenvalue rather than the
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Fig. 10. Stochastic bifurcation of a 2:1 phase locking. Moduli of both the second and the
third eigenvalues of the operator P are plotted in different ranges of A: (a) 0.28 < A < 0.42,
(b) 1.67 < A < 1.82. T=0.85, C = 0.02. Part (a) corresponds to the left end of the A region of
a stochastic 2:1 phase locking, while part (b) corresponds to the right end of the region
(cf. Fig. 4).

second one abruptly changes its value to real (see Figs. 11e and 11f). This
corresponds to a stochastic bifurcation of 5:3 phase locking. Note that no
clear change is observed in the former (from the second to the fifth) eigen-
values, although the arguments of the second and fourth eigenvalues seem
to be slightly locked to 2.09=2n/3 (i.e., slightly flat) in this range of A.

The fourth eigenvalues undergo an abrupt change in the range
2.15 < A < 2.19. This corresponds to the deterministic (noise-free) case of
two coexisting 4:2 phase lockings [coexistence of two stable 2-periodic
orbits of the map g ( t ) ] . As seen briefly in Section 5.1, each eigenvalue and
eigenfunction of an operator P has a different dynamic role in the density
evolution by the operator. Thus, the eigenvalue which makes an abrupt
change may depend on the corresponding deterministic phase-locking
pattern. Even a fixed phase-locking pattern, as seen in the above example
of 2:1 phase locking, may show different modes of bifurcations at different
values of the bifurcation parameter corresponding to different eigenvalues.

In Fig. 12, the arguments of the second eigenvalues are plotted with
different noise intensities. In Fig. 12a, the arguments are plotted in the
range of A = [0.28,0.42]. This corresponds to the spectral bifurcation
diagram of Fig. 9. The stochastic bifurcation point in the sense of our
definition (the point at which the eigenvalue changes its value from com-
plex to real) is shifted rightward as the noise intensity increases. Thus noise
disturbs the phase locking; a bigger input signal is required in the presence
of larger noise. In Fig. 12b the arguments are plotted in the range of
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Fig. 11. Spectral bifurcation diagram (several phase lockings), (a, c, e) Moduli and (b, d, f)
arguments of the second, fourth, and sixth eigenvalues are plotted, respectively, in the range
of 1.95 <A <2.3. T = 0.85, r = 0.02.
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Fig. 12. Shift of stochastic 2:1 bifurcation points. Arguments of the second eigenvalues of the
operator 9 are plotted with different noise intensities a = 0.02, 0.03, 0.04, in different ranges
of A: (a) 0.28<A<0.42, (b) 1.67 <A< 1.82. T = 0.85. The bifurcation point of part (a)
corresponds to the left end of the region of a stochastic 2:1 phase locking, while that of
part (b) corresponds to the right end (cf. Fig. 4). The increase of noise intensity shifts the
bifurcation point rightward in (a) and leftward in (b).

A = [1.67, 1.82]. Figure 12a corresponds to the left endpoint of the A range
of a stochastic 2:1 phase locking, while Fig. 12b corresponds to the right
endpoint (cf. Fig. 4). The right bifurcation point shifts leftward differently
from the left endpoint as the noise intensity increases. We can also see that
the magnitude of the argument increase of Fig. 12b is much bigger than the
decrease of Fig. 12a; the density evolution changes its dynamics quickly
after the stochastic 2:1 bifurcation.

6. DISCUSSION

We have studied the van der Pol relaxation oscillator in the presence
of both noise and sinusoidal forcing. An operator P is introduced as a
natural extension of a deterministic (noise-free) one-dimensional return
map to the presence case of noise. We can numerically compute the
operator in a short time and with a high accuracy since the computation
does not require numerical simulations of the stochastic differential equa-
tion (1).(14) Thus we can study very delicate phenomena caused by noise.

Using the method, stochastic phase lockings and stochastic bifurca-
tions were analyzed; in particular, stochastic bifurcations were analyzed on
the basis of spectral properties of the operator. In fact, stochastic bifurca-
tions were clearly observed in the sense of our definition; the eigenvalues
of the operator changed their values from complex to real abruptly (not
smoothly) at a possible stochastic bifurcation point.



Eigenfunctions of eigenvalues with moduli less than unity have an
important "dynamic" role in the density evolution by the operator P, while
the first eigenfunction or the invariant density has only a "static" role. Thus
it seems reasonable to analyze stochastic bifurcations using eigenvalues
other than the first one. Different eigenvalues were used, depending on the
bifurcation pattern; the second eigenvalue for 2:1 phase locking and the
sixth eigenvalue for 5:3 locking, etc. Eigenfunctions with different eigen-
values have different dynamic roles and it seems necessary to select the
eigenvalue on a case-by-case basis, depending on the bifurcation (or phase-
locking) patterns.

In contrast to deterministic dynamical systems, noisy dynamical
systems may show bifurcation phenomena of several modes corresponding
to second, third, fourth,... eigenvalues even in a fixed bifurcation pattern,
although the larger eigenvalue has a more important role in the density
evolution. In the present paper, we made only a broad discussion to
demonstrate the important role of the spectra in the dynamics and in the
stochastic bifurcation phenomena of the operator P. A more rigorous dis-
cussion on the validity of our analysis of stochastic bifurcations is necessary
for future research.

The operator P, which is a stochastic extension of the one-dimen-
sional return map, has directly (but numerically) been derived from the
stochastic differential equations rather than the deterministic map p ( t ) . We
can also consider a noisy mapping:
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where £ n ( t n ) denotes a (state-dependent) noise. This noisy mapping is
equivalent to the forced van der Pol relaxation oscillator with noise studied
in the present paper. Thus our operator is the "noisy" Frobenius-Perron
operator of a noisy one-dimensional mapping,(11) If the noise is state-inde-
pendent, £ n ( t n ) = £n, then the noisy map is considered to be a simpler
approximation of the operator. Much work has been done on such noisy
maps (see ref. 10 and references therein). Our analysis method of a
stochastic bifurcation is more directly and easily applicable to such noisy
maps. This direction of study is now progressing.

All stochastic bifurcations presented in our examples correspond to
the deterministic tangent or saddle-node bifurcations of a one-dimensional
mapping. The analysis of noise effects on period-doubling bifurcations and
chaos using the method would be an interesting future subject.

We have considered the case of the singular limit E = 0, and thus the
dynamics of the van der Pol oscillator was restricted to that along the one-
dimensional limit cycle. The singular perturbation problem of considering



the e = 0 case may be a challenging future subject. Not many studies seem
to have been done for the analysis of noisy continuous-time systems (i.e.,
stochastic differential equations) by a stochastic return mapping, although
the mapping method is typical for deterministic dynamical systems. Weiss
and Knoblock(12,15) studied a general limit cycle oscillator with small noise
and derived a stochastic return map directly from a stochastic differential
equation, considering dynamics both parallel and perpendicular to the limit
cycle. Analysis of stochastic bifurcations of such a limit cycle oscillator also
seems interesting.
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